

SCAG Conservation Framework and Assessment

November 19th, 2014 Northwest Habitat Institute

In today's presentation:

- Regional conservation planning
 - Approaches
 - Framework
- CHAP approach
 - Mitigation
 - Ecosystem services
- CHAP habitat assessment
 - Coarse scale
 - Fine scale (Prado)
- Conservation strategy next steps

The Human Footprint in the SCAG Region SCAG Per-Acre Habitat Value by Basin **CHAP Coarse-scale Evaluation**

Conservation Planning

Why do we need conservation planning?

Human population and biodiversity are not distributed evenly.

Conservation Planning

Stages of Systematic Conservation Planning

Conservation Planning Approaches

- Ad hoc establishment of conservation areas
- Subjective, consensus-based workshops
- Quantitative, data-driven
- Combination of quantitative and stakeholder-driven techniques

Conservation Planning Approaches

Coarse Filter

- Assessment of biological diversity based on species and habitat
- Assumes
 vegetation/habitats
 serves as surrogates for
 ecosystems and
 elements of biodiversity

Fine Filter

- Applies local information, usually at local level
- Exemplified by action taken under ESA to recover individual atrisk species

Important Components of Quantitative Approaches

- Well-defined goals
- Appropriate spatial scale
- Conducting analysis at several scales
- Understanding of limitations of maps
- Appropriate units for the analyses
- Indices of viability and threat

Guiding Principles for a Conservation Framework

- Based on scientific principles
- Frame a common understanding of biological realities related to conservation
- Emphasize the interactions between species, habitat, and functions (including human actions)
- Recognize the dynamic nature of ecosystems and role of climate; importance of biological diversity
- Management is adaptive and citizens can play a key role in monitoring

[See Box 1 of report (page 6)]

CHAP Approach

- Ecosystem-based habitat evaluation framework
- Uses a habitat and biodiversity system to assess multiple <u>species</u>, <u>habitat</u> features, and <u>functions</u> by habitat type (O'Neil et al. 2012)
 - At the fine scale, includes an inventory of habitat components and their relationship to ecological functions performed by species.
- CHAP method is a biological accounting system capable of evaluating impacts (debits) and mitigation (credits) at a site.

Hierarchical Habitat Mapping

Region: Coarse Level

- 1) Consistent region-wide habitat map across county boundaries.
- 2) Change detection capabilities with previous and future versions.
- 3) Support for decision making at a landscape level.

Intermediate Level

- 1) Refined habitat and structure mapping.
- 2) Improved delineation of unique habitat/structural habitat combinations.

Site: Fine Level

- 1) Site-specific habitat structure and KEC mapping.
- 2) Support for debiting and crediting protocols for mitigation and impact assessment.

Steps for Mitigation

- Determine project's boundaries
- Field Data Collection
- Develop a species list
- Data Compilation

Step 1:
Determine a
Project's
Boundaries

Step 2: Field Data Collection

Step 3: Species List

Step 4: Data Compilation

- Baseline data from the mapping and field inventory is used to generate two relationship matrices including
 - 1) a potential species by function (KEFs) matrix
 - 2) a habitat (KECs) by function (KEFs) matrix
- To create these matrices, each species is linked to the associated habitat elements (KECs) and functions (KEFs).

Affected Habitat Value

minus

Baseline Habitat Value

= Impact Value

Debit

Credit

Advance Mitigation

- Advance mitigation is a form of mitigation constructed in advance of a permitted impact.
- The coarse-scale CHAP per-acre values developed for each basin can give planners a relative idea of the value of each habitat type for the purposes of advance mitigation.
- The coarse-scale value is an estimate, and if sites are purchased then a fine-scale CHAP analysis of the impact and mitigation areas would be needed for a more precise value and tracking.

SCAG Regional CHAP Assessment

Coarse-scale Assessment

Range Maps

Habitat Types

Habitat Associations

BITTERBRUSH
BLUE OAK WOODLAND
BLUE OAK-FOOTHILL PINE
CHAMISE-REDSHANK
CHAPARRAL

COASTAL OAK WOODLAND

COASTAL SCRUB
DESERT RIPARIAN
DESERT WASH
EUCALYPTUS
JUNIPER
MIXED CHAPARRAL
MONTANE CHAPARRAL
MONTANE HARDWOOD
PINYON-JUNIPER
PONDEROSA PINE
SAGEBRUSH

VALLEY FOOTHILL RIPARIAN
VALLEY OAK WOODLAND

Key Ecological Functions:

BLUE-GRAY GNATCATCHER

Trophic relationships:

- heterotrophic consumer
 - secondary consumer (primary predator or primary carnivore)
 - invertebrate eater
 - terrestrial invertebrates

Prey relationships:

- prey for secondary or tertiary consumer (primary or secondary predator)

Organismal relationships:

- nest parasite
 - common interspecific host

Species List

- Generated by intersecting CWHR species range maps with basins within the SCAG regional boundary
- CWHR range maps do not include fish species

Animal Type	# of Species	# Listed	% Listed
Amphibian	23	4	17
Bird	333	20	6
Mammal	111	11	10
Reptile	72	5	7
Total	539	40	7

Mean Functional Redundancy Index (MFRI)

Valley Foothill Riparian	Function 1 Disperses Seeds/Fruits (through ingestion or caching)	Function 2 Breaks up Down Wood	Function 3 Primary Burrow Excavator (underground)	Function 4 Eats Terrestrial Invertebrates
Acorn Woodpecker	1	1	0	1
Black Bear	1	1	1	1
California Newt	0	0	0	1
Yellow Warbler	0	0	0	1

Coarse-scale Habitat Values

HUC 6 NAME	WHR NAME	Acres	MFRI
Santa Ana	PERENNIAL GRASSLAND	313.59	17.62
Santa Ana	PINYON JUNIPER	8098.78	19.49
Santa Ana	PONDEROSA PINE	552.75	18.71
Santa Ana	SAGEBRUSH	6420.16	14.98
Santa Ana	SALINE EMERGENT WETLAND	627.13	13.43
Santa Ana	SIERRAN MIXED CONIFER	68513.23	17.08
Santa Ana	SUBALPINE CONIFER	8956.67	8.46
Santa Ana	URBAN	584331.57	4.41
Santa Ana	VALLEY FOOTHILL RIPARIAN	11062.28	22.92

Riparian

Grassland

In general, riparian and woodland habitats will have a higher functional redundancy than grassland and desert habitats. But that does not mean than one is more important in terms of conservation.

Pilot Fine-scale Assessment

Prado Basin

Fine-scale CHAP Methods

- Form a Habitat Evaluation Team
- Create a species list
- Preliminarily map study site
- Conduct field inventory
- Finalize mapping and data entry
- Run calculations
- Produce report

Proportion of Total Acreage

Comparison of Coarse- to Fine-scale Analyses

- Species lists
 - Fine-scale species list is reviewed and refined by habitat evaluation team.
- Habitat Value
 - Fine-scale includes aerial and field mapping of habitats, structural conditions, KECs, and invasive plant species.

Building a Conservation Strategy

Prioritizing conservation actions

Protected Areas Should:

- Represent the biodiversity of a region
- Promote the long-term survival of species and other elements of biodiversity by maintaining natural processes and by excluding threats (in other words, promote ecological integrity)

Representation

- Ensure the full spectrum of habitat types are represented within a protected areas network.
- Fine-scale community and species needs should also be taken into account as these may be left out of a coarse-scale analysis of representation.

Santa Ana Basin

- Protected areas cover 7% of the basin.
- Less than 3% of Valley Foothill Riparian habitat is protected.
- 4% of Coastal Scrub is protected.
- 89% of Subalpine Conifer has protected status.

Ecological Integrity

- An intact and well-functioning ecosystem.
- Stresses from human activity threaten ecological integrity.

Connectivity

- Important for gene flow and animal movement.
- In fragmented habitat, conservation corridors (linkages) can connect patches of habitat and increase connectivity.
- The California Essential Habitat Connectivity Project is a coarse-scale attempt to identify important habitat corridors.

South Coast Missing Linkages

Desert Connectivity Project

Incorporating Climate Change

- Connectivity often used as a strategy.
 - Species-based modeling (fine filter) using climate change simulations.
 - Linkage designs that prioritize climatic diversity and access to cooler climates.
 - Protect river valleys as they provide gentle temperature and moisture gradients (coarse filter).

Incorporating Climate Change

- There is uncertainty in connectivity designs as well as climate models.
- Increasing size of existing protected areas and mitigating threats a well-established conservation strategy.

EDENs Environmentally Distributed Ecological Networks

- 10 Steps to Setting Up and Running an EDEN (p.40)
- Key Parts are to Develop a Structured Format to:
 - Identifying Questions
 - Assembling Network ~ Protected Areas
 - Training Participants to Apply Methods
 - Field Data QA/QC
- Establish Aquatic, Marine and Terrestrial Networks

Citizen Science

Conclusion

Moving Forward

- SCAG now has a GIS Data Inventory, Key Stakeholders and Scientific Expert Inventory, CHAP Assessment and Geodatabase.
- Data gaps include HCPs, NCCPs, regional connectivity plans, climate change data.
- Next step is to meet with stakeholders and experts and define conservation goals.

Conclusion

Value All the Pieces Big & Small